

45V/3µA/300mA, Ultra-Low-Iq, Low Dropout LDO

Modify Record:

版次	新版本	旧版本	修改单位	修改内容
2023-09-13	1.0	NA	研发部	新文件制成

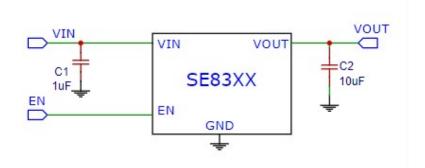
General Description

SE83XX series is designed for power-sensitive applications. It includes a precision and high voltage input stage, an ultra-low-power bias current branch, and results in a ultra-low-power and low-dropout linear regulator.

The SE83XX operates from an input voltage of V_{OUT} +1V to 40V, consumes only $3\mu\mathrm{A}$ of quiescent current, and offers 1% initial accuracy and low dropout voltage, 300mV typical at 100mA.

SE83XX has 8.0V, 9.0V, 12V fixed voltage versions.

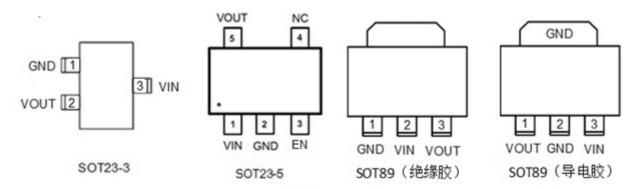
Other features include short-circuit protection and thermal shutdown protection.


Features

- Ultra Low Quiescent Current: 3µA(Typ.)
- Wide Operating Voltage: V_{OUT}+1V to 40V
- High output current: ≥300mA
- System startup with no overshoot
- Short circuit protection is designed with no overshoot
- Low Dropout Voltage
- High Accuracy Output Voltage: ±1%
- Excellent power / load transientresponse
- Low temperature coefficient: ±100ppm/°C
- Thermal and Short-Circuit Protection
- SOT-89、SOT-23、SOT23-5 package
- Customer Pin Assignments are available

Applications

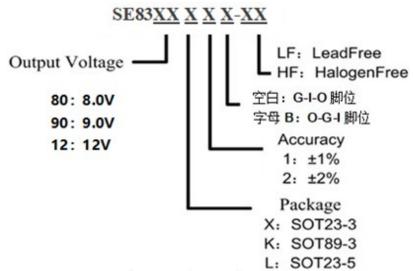
- Battery-powered Smoke sensor
- Smoke sensor
- Microcontrollers
- Household appliances and instruments


Application Diagram

Pin Configuration

(Customer pin assignments are available)

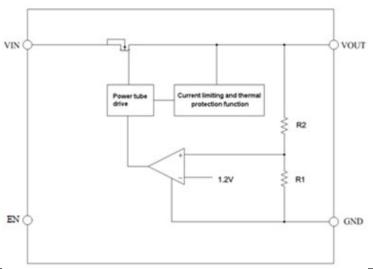
PIN Definitions


Pin Name	Number SOT23-3	Number SOT23-5	Number SOT89(绝)	Number SOT89(导)	Function Description
GND	1	2	1	2	Ground
VOUT	2	5	3	1	Output Voltage
VIN	3	1	2	3	Power Supply Input
EN	N/A	3	N/A	N/A	High Enable / Low Disable
NC	N/A	4	N/A	N/A	Not Connected

Absolute Maximum Rating

Symbol	Parameter	Value	Units
V _{IN}	Input Supply Voltage	45	V
V _{OUT}	Output Voltage	12	│
T _A	Operating Temperature	-40105	
T _{STG}	Storage Temperature	-40150	°C
T_J	Maximum Junction Temperature	150	
T _{LEAD}	Lead Temperature (Soldering) 10 seconds	260	
		165(SOT89)	
θ_{JA}	Thermal Resistance, Junction-to-Ambient	280(SOT23)	☐ °C/W
		750 (SOT89)	
P_{D}	Power Consumption	250 (SOT23)	mW
Electrostatic	Human Body Model(HBM)	4	kV
discharge rating	Charged Device Model (MM)	100	V

Ordering Information

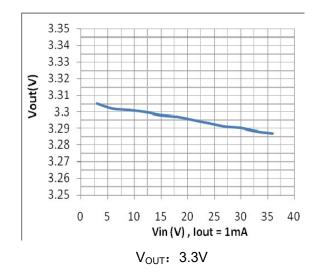


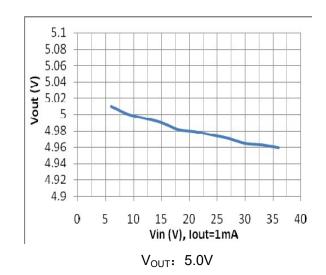
Part Number	Marking Information	Package	Specs	Packing	Remarks
	<u>8</u> 3XXz	SOT23-3	3K/disc,	Tono On Dool 7 inch	Number Underline: year;
SE83XX XXX-HF	<u>8</u> 3XXz	SOT23-5	30K/box, 120K/case	Tape On Reel, 7-inch plastic disc in vacuum-	XX means Voltage; z means week;
AAA-HF	SE83XX YYWW-HF	SOT89	1K/disc, 10K/box, 40K/case	sealed aluminum bag, with disccant inserted.	YY means year; WW means week; HF: Halogen Free.

Operating Rating

Parameter	Value	Units
Operating Temperature	-20℃~85	$^{\circ}$
Storage Temperature	-40℃~125	$^{\circ}$
Lead Temperature (Soldering) 10 seconds	260	$^{\circ}$

Block Diagram

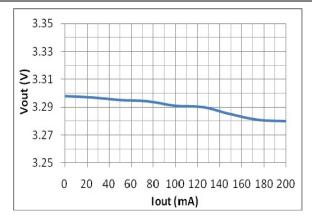


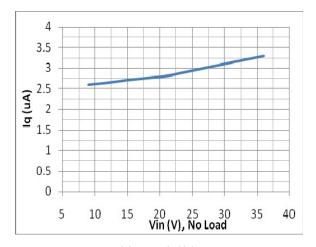


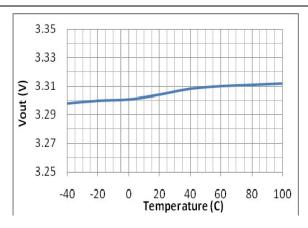
Electrical Characteristics

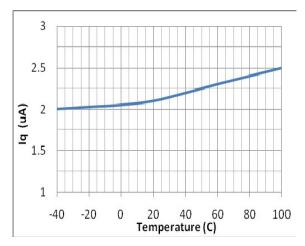
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input Supply Voltage		3.0		40	V
\/	Output Voltage Assurage	I =10mΛ	-1%		1%	V
V _{OUT}	Output Voltage Accuracy	I _{OUT} =10mA	-2%		2%	V
IQ	Quiescent Current			3.0	6.0	μA
I _{OUT}	Output Current			300		mA
		I_{OUT} =10mA ΔV_{OUT} = - V_{OUT} *2%		30		mV
V_{DROP}	Dropout Voltage	I_{OUT} =100mA ΔV_{OUT} = - V_{OUT} *2%		300		mV
		I _{OUT} =200mA ΔV _{OUT} = - V _{OUT} *2%		600		mV
V_{LR}	Load Regulation	$1mA \le I_{OUT} \le 100mA$		40		mV
V_{SR}	Line Regulation	I_{OUT} =1mA, V_{IN} =(V_{OUT} +1V) to 30V		0.02		%/V
PSRR	Power Supply Rejection Ratio	Vin=12V , lout=10mA F=1Khz,Vout=3.3V	_	80	_	dB
V _{ENH}	Enable High Level	Enabled	1			V
V _{ENL}	Enable Low Level	Disabled		_	0.4	V
I _{EN}	EN Current	EN=0~V _{IN} (R _{EN} =100K)		1		μA
I _{LIMIT}	Current Limit	V_{IN} =(V_{OUT} +1 V) to 30 V R _{LOAD} = V_{OUT} /1A		450		mA
TSHDN	Thermal Protection			150		°C
TC _{VOUT}	Output Voltage Temperature Coefficient	I _{OUT} =10mA -40°C≤T _{AMB} ≤100°C		±100		ppm/°C

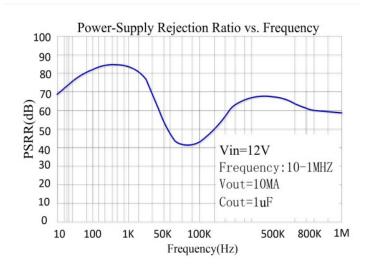
Typical Performance Characteristics





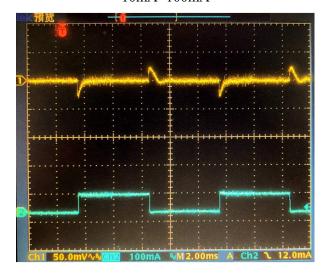

$45V/3\mu A/300mA$, Ultra-Low-Iq, Low Dropout LDO

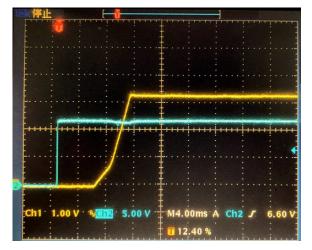

V_{OUT}: 3.3V


V_{OUT}: 3.3V

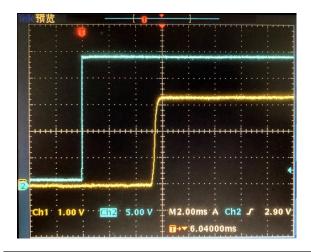
V_{OUT}: 3.3V

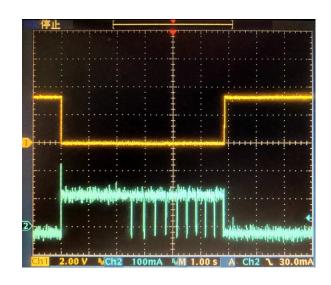
V_{OUT}: 5.0V

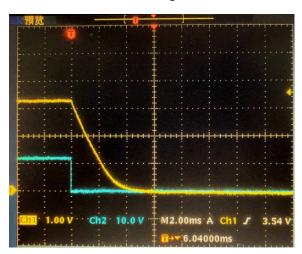




45V/3µA/300mA, Ultra-Low-Iq, Low Dropout LDO


Load Transient (Vin=12V) 10mA~100mA


EN OFF**→**ON


VCC Power ON

Short-Circuit and OTP (Vin=24V)

EN ON→ OFF (No Load)
Discharge

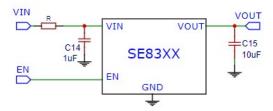
APPLICATION INFORMATION INPUT CAPACITOR

An input ceramic capacitor of $1\mu F$ is required between the VIN and GND pin. The capacitor shall be placed as close as possible to VIN pin, and the wide copper trace is also recommended.

OUTPUT CAPACITOR

The recommended is 10uF ceramic capacitor. The minimum capacitance for stable and correct operation is $1\mu F$. The higher the value of this output capacitor, the lower the ripple during the operations. The output capacitor should be placed as close to the Output Pin as possible. The wide copper trace is recommended.

NO-LOAD STABILITY

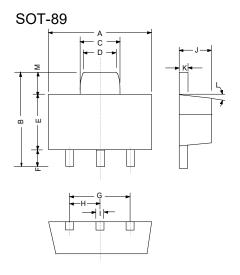

The SE83XX will remain stable and in regulation with no external load. This is especially important in CMOS RAM keep-alive applications.

FOLD-BACK SHORT-CIRCUIT PROTECTION

When short-circuit occurs, SE83XX will fold back the short-circuit currents to a pre-determined lower level, This will reduce excessive heat in otherwise large current conditions. This feature provides another level of protection to IC itself and also the whole system.

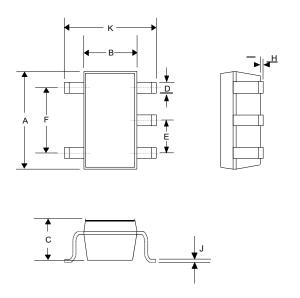
IN-RUSH CURRENT AND VOLTAGE

The following figure shows a typical application circuit for the SE83XX devices. Please keep in mind that in-rush current can push up the Vin overshoot by as much as 50%. For example, when Vin=30V, the in-rush caused spike voltage can be as high as 45V. Therefore the voltage rating of Cin needs to be higher than 50% of the application.


In live insertion application, it is suggested that R, C1 are selected as following:

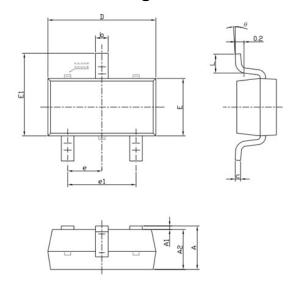
 $1.C1=10\mu F\sim 100\mu F$ ceramic or electrolytic capacitor with maximum voltage greater than 50V.

2.If the maximum current is known, for example at 10mA, and the Vin(min)=15V and Vin(max)=30V, then around 7~8V voltage drop on this R is allowed, therefor the R=7.5V/10mA=750ohms. Please note that the maximum power on this resistor 10mA*7.5V=75mW, so a resistor with about 1/8W rating is sufficient.



Outline Drawing for SOT-89

DIM ENSIO NS						
DIM ^N	INC	HES	M M			
DIIVI	MIN	M AX	MIN	M AX		
Α	0.173	0 .181	4.400	4 .600		
В	0.159	0 .167	4.050	4 .250		
С	0.067	0 .075	1.700	1 .900		
D	0.051	0 .059	1.300	1 .500		
Е	0.094	0 .102	2.400	2 .600		
F	0.035	0 .047	0.890	1 .200		
G	0.118REF		3.00	REF		
Н	0.059	REF	1.50 REF			
I	0.016	0 .020	0.400	0 .520		
J	0.055	0 .063	1.400	1 .600		
K	0.014	0 .016	0.350	0 .410		
L	10 °TYP		10 °TYP			
М	0.028REF		0.70 REF			


Outline Drawing for SOT-23-5

	DIMENSIONS						
DIM	INC	CHES	MM				
	MIN	MAX	MIN	MAX			
Α	0.110	0.120	2.80	3.05			
В	0.059	0.070	1.50	1.75			
С	0.036	0.051	0.90	1.30			
D	0.014	0.020	0.35	0.50			
Е	-	0.037	-	0.95			
F	-	0.075	-	1.90			
Н	-	0.006	-	0.15			
J	0.0035	0.008	0.090	0.20			
K	0.102	0.118	2.60	3.00			

Outline Drawing for SOT-23-3

Cumbal	Dimensions	In Millimeters	Dimensions in Inches		
Symbol	Min	Max	MIn	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0,	8°	0°	8°	

Customer Support

<u>Seaward Electronics Incorporated - China</u>

Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Email: sales@seawardinc.com.cn

<u>Seaward Electronics Incorporated – North America</u>

1512 Centre Pointe Dr.

Milpitas, CA95035, USA

Tel: 1-650-444-0713